If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2-12n-20=0
a = 3; b = -12; c = -20;
Δ = b2-4ac
Δ = -122-4·3·(-20)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8\sqrt{6}}{2*3}=\frac{12-8\sqrt{6}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8\sqrt{6}}{2*3}=\frac{12+8\sqrt{6}}{6} $
| -2-3-3x=7 | | 0.1x-x/3=-7 | | -d=16 | | 12+.15=10+25x | | 3x+52+2x=90 | | 3u+12=36 | | 5(x+3)=2(x+5 | | -8.1=y/6+11.1 | | 1.2b+2=4.2+b | | 5*10z/4=32 | | 12=4a+2a | | 3x+x+3=2+9 | | 3f+15=18 | | 6x+9/3=2 | | y=4+0.1/0.5 | | -3(x+1)=5x-43 | | 6s-32=46 | | 1/3x+1/2=5/6x-5/2 | | n.6+4n=26 | | x2+3x−10x=−3 | | 7(+5)-12=3(a+2) | | (x+1)+3=52 | | -3/2+15/4x=43/8 | | 6p+4p+p+16+6p+31+32+43=360 | | x+90+2x=90 | | 4x+7+8x=9x-2 | | 6x+5–2x=4+4x+1 | | 8v=72 | | 4(y+3)+2y=-12 | | 2t-49+t-33+2t-35+2t-49+2t-50=360 | | 15x-7=-3x+29 | | 7x9=(7x10)-(7x0) |